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THE EFFECTS OF FIELD ERRORS ON
LOW-GAIN FREE ELECTRON LASERS

I. Introduction

Intrinsic magnetic field errors bB are present in any realistic wiggler magnet. Such

errors are unavoidable and arise from imperfections in the fabrication and assembly of

wiggler magnets. State-of-the-art wiggler construction techniques yield rms field errors

on the order1 (BiB,/),, :-- 0.1 - 0.5%. These field errors perturb the electron beam as it

propagates through the wiggler 2 - 16 and lead to i) a random walk of the beam centroid, 6:,

ii) variations in the axial beam energy, 6 yz, and iii) variations in the relative phase of the

electrons in the ponderomotive potential, &0. If left uncorrected, field errors ultimately

decrease free electron laser (FEL) gain 2 - 11 (this reduction becomes more significant for

long wigglers). Reduction in gain may occur from a loss of overlap between the radiation

and electron beam (due to large 6:) or from a loss of FEL resonance (due to large 6 b).

The initial research on the effects of field errors, for the most part, was primarily

concerned with the random walk 6:. It has been shown that the random walk 6: may be

effectively controlled by i) transverse beam focusing - (finite ko, where ko is the betatron

wavenumber) and by ii) periodic beam steering. 2- ' 0 By using either one or a combination

of beam focusing and periodic steering, in principle, the random walk 6: may be kept as

small as desired. The major conclusions of the present work are the following. Given that

the random walk 6: may be effectively controlled, the phase deviation 6 is the primary

physical parameter characterizing loss of gain for FELs in the low-gain regime. 3 - 16 In

particular, in order to avoid significant reduction in gain, it is necessary that I6 bI << 27r.

hi addition, transverse beam focusing is not effective in controlling 6b. Specifically, it may

be shown that the mean phase deviation (6b) is independent of transverse focusing (inde-

pendent of ku), where (...) signifies an ensemble average. Furthermore, beam steering 2- 10

may be used to reduce J6Z01 when" Ls < AO, where Ls is the length over which the steer-

ing is performed and Ap = 27r/ko. As an example, for kp = 0 and otL steering segment,

(60) = (1/ 3 )( 6&)N, where (6 ')N is the value in the absence of steering.

As a further motivation, it is appropriate to consider some aspects of wiggler design.

Typically, when "ordering" a wiggler from a vendor, limits are placed on bBrm. = (bB2)1/2

and I f dzbBj. To meet these specifications, the vendor may "arrange" the magnet poles
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(i.e., actual pole rearrangements, the use of shims, judicious magnet selection, etc.) in

an optimum sequence 12-15 such that I f dz6Bj is minimized. This and other research 3 - 16

indicates, however, that for low-gain FELs the optimum "figure of merit" to minimize is

not the line integral I f dz6BI, but the magnitude of the phase deviation l6'bI.

In the following, the effects of random transverse magnetic field errors, 6B±(z), on

the performance of low-gain FELs are studied analytically and numerically. In particular,

the transverse displacement, parallel energy variation and relative phase deviation of an

electron beam propagating through a wiggler are calculated neglecting the effects of finite

beam emittance, initial beam energy spread and wiggler field tapering. Furthermore, the

FEL gain in the low-gain regime is determined in the ID limit, assuming a plane wave,

non-diffracting radiation field. Expressions are derived for a particular FEL quantity Q for

a single wiggler realization (a specific set of field errors) and for an ensemble of statistically

identical wigglers. The ensemble averages (the mean and the variance) of the quantity Q

are useful for determining the most probable range of Q for a particular member of the

ensemble. The remainder of this paper is organized as follows. The random walk of the

beam centroid and the consequent variations in the axial beam energy are discussed in

Sections II and III, respectively. The deviations in the relative phase resulting from the

field errors are examined in Section IV. In Section V, the effect of the field errors on the

FEL gain in the low-gain regime is determined. The benefits of beam steering are analyzed

in Section VI and addition methods for reducing the detrimental effects of field errors are

discussed in Section VII. This paper concludes with a discussion and summary in Section

VIII.
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II. Transverse Beam Centroid Deviations

As the electron beam propagates through the wiggler, the electrons experience random

velocity kicks 6v± via the v. x 6B± random force. The transverse centroid motion of an

electron beam passing through a wiggler with transverse gradients (weak focusing) and

finite field errors is characterized by an equation of the form 6

d 2 iz/dz2 = -k 26x + k,,,a,,bi? /Y, (1)

where k,, is the wiggler wavenumber, kp = ka,/(vf27) is the betatron wavenumber,

B 1 = eB,/B,, is the normalized field error, B is the ideal wiggler peak magnetic field,

a = eB,,/k,,mc2 , -y is the relativistic factor of the electron beam and z is the axial

propagation distance. The first term on the right represents the focusing force due to the

transverse gradients in the wiggler field, whereas the second term on the right represents

the random force due to the field errors. This equation may be solved to give the random

centroid motion6

awkw f"
bof 3 -= dz'coskp(z' - z)15Bb(z'), (2)

X= ak- ] dz'sinkp(z' - z)6B,(z'), (3)

where i , = /v 2 /c is the normalized transverse velocity deviation.

Given the precise functional dependence of the wiggler errors bBy(z) for a given wig-

gler, the above expressions may be used to calculate the transverse orbit deviations bi3 (z)

and bx(z) for that specific wiggler. However, one does not always know ahead of time

the full functional dependence of bB,(z). Instead, one may know only certain statistical

properties of the field errors, such as the rms value Br,,,. Hence, it is useful to consider

an ensemble of statistically identical wigglers for which the statistical properties of the

field errors are known. By performing appropriate averages over this ensemble, one may

determine the mean (Q) and variance a, for a quantity Q and, hence, determine the most

probable range of a single realization of Q. Here and throughout the following, bBy(z) is

assumed' to be a random, homogeneous function with zero mean, finite variance and with

an autocorrelation distance given by zc, (zCY :_ \/2 is assumed). Details of the statistical

properties of of the field errors bB,(z) are discussed in Ref. 6.
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Statistically averaging over an ensemble of wigglers, it is possible to determine the

mean-square centroid motion' (neglecting the effects of finite beam emittance)

o#2sin 2kpz))= D ( + 2k (4)

(X2) =D ( _ sin 2kz) (5)
where 2k,6 "

where D a2 2,(B)Z/(2). Physically, the centroid orbits bx and 6/h, represent

diffusing betatron orbits characterized by a diffusion coefficient D. Notice that by in-

creasing k. by additional external focusing, one may, in principle, keep 6 Z,,, as small

as desired. (The minimum centroid displacement is limited by finite emittance effects,

which are neglected in the present discussion.) Furthermore, notice that in the ID limit,

(2kaz)2 << 1, (6) = 2Dz and (622) = 2Dz 3 /3, as found previously by Kincaid.2 Hence,

weak focusing (finite kp) is effective in reducing the asymptotic scaling of the random walk

6 Xra from z3 / 2 to z 1/ 2 . To avoid loss of the overlap between the radiation and electron

beam, it is desirable to keep (bX2) << r,, where r, is the radiation spot size. A detailed

discussion of transverse orbit diviations arising from random field errors in various wiggler

configurations is given in Ref. 6 and summarized in Appendix A.
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III. Axial Beam Energy Variations

Not only do the field errors perturb the transverse motion of the electrons, they also

perturb the axial motion. This is true since a static magnetic field conserves total electron

energy. The axial motion may easily be calculated' using the above expressions for the

transverse motion along with '8 2 + #2 =constant. One may calculate various statistical

moments of the axial motion, such as the mean axial energy variation (--") =('Y) - 7Y0-

For example, the mean energy variation for a helical wiggler with transverse focusing is

given by
(&Vz) _ (1 2 a /4) ) ( oB2))+a.O a (+a) 2 k2((6bf + (f)ZcZ, (6)7z0 2(1 + a2 )2 W W

where the limit (2koz) 2 >> 1 has been assumed and zc = = zCY. A detailed discussion

of the axial energy variation for various wiggler configurations is given in Ref. 6.

Statistically, (b-y.) may be interpreted as an effective energy spread due to field

errors s This effective energy spread may lead to a loss of FEL resonance. Heuristi-

cally, in order to maintain resonance, one expects that in the low or high gain regime

the effective energy spread must be small compared to the intrinsic FEL efficiency 77,

1(6-y)I/-yo < r9. In the trapped particle regime, maintaining resonance implies that the

effective energy spread must be small compared to the depth of the ponderomotive well,

I(6r)I/I o0 < Iel'pI/(-ymc2 ), where Ip is the ponderomotive potential. For example, in the

low-gain regime, 77 = 1/(2N), where N is the number of wiggler periods. The inequality

1(6b-t.)/yo < 17 implies 6Bi,, < 1/(7rN) a- 0.3% for N = 100 (where a - 1 has been

assumed and 8B,., = (b.5)1/2 = ( by) 1/2 ). One should keep in mind that other sources

exist which contribute to the effective energy spread (e.g., initial beam emittance and en-

ergy spreads due to transverse gradients in the wiggler fields) and these factors should be

considered in a complete discussion of acceptable beam energy spreads in FELs.
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IV. Deviations in the Relative Phase

To quantify how the parallel energy variation affects FEL gain, it is necessary to

consider the relative phase 0& of the electrons in the ponderomoti;- wave,

d-kldz - k + k, - wl(c#.). (7)

As is discussed below, the FEL gain is directly determined by the behavior of the relative

phase ,0. In the small signal limit (aR --+ 0, where aR is the normalized radiation field), the

electron energy is constant and the axial electron velocity is given by /3 = I30_- 83, where 30

is the initial normalized electron velocity. It is convenient to write 'i = O-Lo + bj.L, where

fl±0 is the ideal electron wiggle velocity in the absence of field errors and I ±/P±/zo11 << 1.

The deviation in phase 6bo due to the field errors -9 is given byZ
W, j dz'(2fl3±o . 64 ±64) (8)

where , 0 - fi0- The specific behavior of &0 depends on the specific behavior of

the transverse motion 0_± arising from the field errors. This motion has been examined

in detail in Ref. 6 and is summarized in Appendix A. In the following, the mean phase

deviation (bik) will be determined for (i) helical wigglers, (ii) linear wigglers with flat pole

faces, (iii) linear wigglers with parabolic pole faces and (iv) an average of (bo) over a

wiggler period will also be determined.

(i) Helical wigglers. Consider a helical wiggler (with weak focusing) described by

the normalized vector potentials given by Eq. (Al) in Appendix A. The deviation in the

transverse electron motion arising from the error 6al is given by

b8.= cos + 6i3, (9a)

6,6y = (a ,/2y)k2,& 2 sin kwz + 6b/, (9b)

where the orbit deviations 6:, 6 y, 6bfl and /p, are given by Eq. (A3)-(A6). Statistically

averaging the phase deviation 6b over an ensemble of wigglers gives

. I ((b2) + (6b ) Z
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± ((6!) _ (.bt)) [2z sin 2kz + (cos2k,z - 1)

I 1 (cos2(k, + k)z_ cos2(Ic .- l )z (10)
+ 2 k (k. +ko) (k,-Icp) )JJ. (10)

(ii) Flat pole faces. Consider a iinear wiggler with flat pcle faces described by the

normalized vector potential given by Eq. (All). The deviation in the transverse electron

motion arising from the field errors is given by

6a,3 = (a, /2-y)k 2Sy 2 cos k~,z + 8o,=, (Ila)

boy = bo, (1lb)

where the orbit deviations by, boy and bfl, are given by Eqs. (A4), (A6) and (A13).

Statistically averaging the phase deviation 6f gives

w (a ak- _ I- ((bft + (6Bt)) z2

+ (b.) z sin 2k,z + 1 (cos2kwz - 1)

+ 11 (cos2(kU,,±kO)z _cos 2(k - ks)z (12
+ 4(kw" k,) +  \ (k. k-) (k-- - k ) . (

(iii) Parabolic pole faces. Consider a linear wiggler with parabolic pole faces described

by the normalized vector potential given by Eq. (A16). The deviation in the transverse

electron motion arising from the field errors is given by

6 ,. = (a./4y)k,(&2 ±6y2 )cosk, z + bO3, (13a)

boy = -(a,,,/2y)k2,6z ycoskwz + by, (13b)

where the orbit deviations 8x, by, 6bf3 and boy are given by Eq. (A3)-(A6) with kp replaced

by ko/ve2. Statistically averaging the phase deviation 6b over an ensemble of wigglers gives

(c) c 2  (B 2 ) + I

z 1 1

" - sin 2k ,z + 1 (cos2kz - 1)+ 2(2k, -k )

I [cos(2k, + v/ko)z cos(2k,, - v2ko)z (14)

4o (V2-kw + k,6) (x/Vlc2-k -

7



(iv) Wiggler averaged result. Notice that if the above results for the mean phase

deviation, Eqs. (10), (12) and (14), are averaged over a wiggler period, then to leading

order (6 b) is given by
2 3

!j~kj ((6bf) + (bi))z, (15)

where the resonance condition w/c = 2k/y 2 / y has been used and z, = zcz = zCY has

been assumed. Here, y 2 1 + a2 for a helical wiggler and - + a 2/2 for a linear

wiggler. Equation (15) is simply the result for the phase deviation as obtained from ID

theory in which transverse gradients (weak focusing) are neglected, i.e. ko = 0. Hence,

it is clear that transverse weak focusing (finite ks) does not significantly reduce the mean

phase deviation. (It should be mentioned tha in the trapped particle regime, the effects

of the synchrotron motion of the electrons may reduce4 (6).)

Physically, 6-0 may be interpreted as an oscillation of the ponderomotive well due to

field errors. Maintaining FEL resonance requires &0 to be small compared to 27r, i.e., the

width of the well. In the low-gain regime, this phase deviation must be kept small over the

entire wiggler length L. Requiring I (6 ,(z = L)) I << 27r implies b ,,, < 1/(7rN) - 0.3%

for N = 100 (where a2 _ 1 has been assumed and bt,,, = (6bb )1/2 = ( By)'/ 2 ). This is

the same condition as obtained above from considering the effective energy spread. In the

high-gain regime, 7 the situation is somewhat different, since the length scale over which

the FEL resonant interaction occurs is the e-folding length 1/17, where F is the spatial

growth rate of the radiation. Maintaining resonance in the high-gain regime corresponds

to keeping 64V small over an e-folding length: I (b,(z = 1/F)) 1 < 7r. Since, typically

1/F << L, one expects the high-gain not to be strongly affected 7 by the phase deviation

6V, (in contrast to the low-gain).
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V. Degradation of FEL Gain

In principle, the magnitude of the random walk of the electron beam centroid may

be kept as small as desired through the use of transverse focusing. This, however, is not

the case with the phase deviation, as is discussed in the previous section. In the following,

the effect of the phase deviation on the FEL gain in the low-gain regime is examined

quantitatively. In determining the FEL gain, a number of assumptions are made. It is

assumed that overlap is maintained between the radiation and electron beam, i.e., the

ranr'-m walk of the electron beam centroid remains smaller than the beam radius. Also,

since weak focusing (transverse gradients) is ineffective in reducing the phase deviation,

the gain wil be considered in the ID limit. The effects of tapering are neglected and a

non -diffracting, plane wave radiation field is assumed. Furthermore, the effects of coupling

to higher order harmonics (for linear wigglers) will be neglected. For a relativistic electron

beam, the normalized amplitude gain, G, is related to the relative phase of the electrons,

V,, by 7

G = dz' [sin4']0 , (16)

where [...Io signifi s an average over the intial phase of the electrons. "1he quantity G is

proportional to the standard definition of the small signal gain.I 7

The relative phase Ob may be determined in the small-signal regime for which a2 > >

6a 2 > > a2. The relative phase may be written as -=(o) + ikj, where O(0) is the relative

phase in the absence of the radiation field,

,0(°)(z) = 0o + 14kwz + b5-(z), (17)

and where Vj is the phase contribution resulting from the radiation field. Here, bo is the

initial phase of the electrons, p is the normalized frequ-ncy mismatch,

A = -(W - WOV)/ 0  (18)

where wo = ckw(1 + /3o)lzo07 2/72 is the resonant frequency, and 6b is the phase deviation

due to random field errors as is given by Eq. (8). The phase contribution resulting from

the radiation field, 01, is determined from the pendulum equation 17

d 2 4k 2

z 2  2- a a sin k(o)(z), (19)

9



which gives

01(z) = 4k. ataaj dz'(z - z') sin(°)(z'). (20)

Assuming j'1' << 1, the expression for G may be expanded giving

G = ISdz' [01 cos0(°)]. (21)

Inserting the expression for b1, Eq. (20), indicates that #he normalized amplitude gain is

proportional to C, where

G= j dz' jdz" [(z' - z") sin (P(O)(z') - 0(0)(z"))] , (22)

where [sin(i,(°)(z') + (O)(z"))] 0 = 0 has been used. Averaging over an ensemble of wig-

glers gives an expression for the mean normalized gain, (C),

(C) = j dz' j dz" (z' - z") (sin [ftk, (z' - z")+ A 7 b(z', z")]), (23)

where Ab(z', z") = 6b(z') - 6b(z"). When A6tb = 0, (C) gives the normalized mean

gain in the absence of field errors.

The precise evaluation of the ensemble average (d) is nontrivial. In particular, the

evaluation of (C) is dependent upon the statistical distribution of the phase deviation 67k.

Consider random field errors a± which are Gaussian distributed. If the terms linear in the

field errors (terms proportional to 6/3±) dominate the integrand in the expression for o,,

Eq. (8), then 6, will tend to be Gaussian distributed. If the terms quadratic in the field

errors (terms proportional to 6/9.) dominate the integrand in the expression for 6b, Eq.

(8), then 6,b will tend to be Gamma distributed. More specifically, the statistical behavior

of 6b depends on whether the linear or quadratic terms dominate in the expression for

variance or of bi,, where o, (2 ,b2 ) - (b p)2. It may be shown (see Appendix B) that

for long wigglers, in which the effects of field errors are important, a, is dominated by the

quadratic terms in Eq. (8). Hence, the linear terms in Eq. (8) may be neglected and the

phase deviation, in ID, may be approximated by

= -(k, /Y2)dz'ba2(Z). (24)

10
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Furthermore, the variable A6& is assumed to be Gamma distributed. Hence, the statistical

average (G) may be evaluated using the Rice-Mandel approximation,' 1" giving

0 dz' f dz"(z' - z") (1 + (Abf0)2/f2)- f/ 2  (25)

x sin [tk.(z' - z") + f tan-' ((Abb)/f)],

where f = (A6b,)2/ ((A6,0 2) _-(A&0) 2). A more detailed discussion of the statistical

evaluation of (d!) is given in Appendix B. Equation (25) describes the reduction of the

mean gain due to random fields errors in the low-gain regime for an untapered wiggler.

The mean of the quantity A~b, as well as the square of its variance, may be calculated

analytically. Using Eq. (24), one finds

(A = -- ((82 + z - Z112) (26)

(Ab60 2) - (?) 2 - k a6B) (6B2 ) z' (z' -

x (z,2 + 3z"2 + 2z'z") , (27)

where zC = zCZ = CY.

The mean gain (6) (normalized to the maximum gain in the absence of field errors)

is a function of only two parameters: the product of the frequency mismatch with the

number of periods, uN, and the mean phase deviation at the wiggler end,

(VIO)..z = (6k(z = L)) = 2Zg ((6A.) + (6P)) zcL 2 . (28)
271i

Using these two parameters, (C) may be written as
X Z'

() = L4 j d' di"(il - ") (I + (b,)2 ..h 2 ) - f'2
10 10 M(29)

x sin [2i jN(V' - V') + f tan-' ((6)...,h)]

where 2 = z/L and

f = (3/4) (' + i,)2 / (,2 + 3i112 + i'i"), (30a)

h = (I2 - 12) /f. (30b)

II



Equation (29) indicates that (d) decreases as (/5i)r,,= increases. In a similar fashion, it

is possible to calculate an expression for the variance of the gain, the result of which is

given in Appendix D. This variance tends to be large, as is indicated by the numerical

simulations discussed below.

Equation (25) may be evaluated numerically to determine the behavior of the mean

gain. Figure 1 illustrates this behavior, in which the mean gain (d) is plotted as a function

of the frequency mismatch parameter uN for several values of normalized rms field error

6B,, (0.0%, 0.1%,...,0.5%). The parameters in Fig. 1 correspond to a linearly polarized

wiggler with B,. = 5.4 kG, A = 2.8 cm, N = 130 and -y = 350 in the limit ke = 0

(transverse focusing is neglected). Notice that with increasing rms field error, the maximum

mean gain decreases and the position of this maximum moves to higher values of frequency

mismatch. Figure 2 shows the peak gain (G)ma as a function of normalized rms field error

6 Bm,, as obtained from Eq. (25), for the above parameters. The x's in Fig. 2 are the result

of an FEL simulation code for individual wiggler realizations (particular arrangements of

random field errors). In these simulation runs, a random field error model similar to that

of Kincaid 2' 6 was used along with an electron beam of current 2.0 A with an emittance

of 10 um-rad. Notice that the large spread in the simulation results indicates a relatively

large variance of the gain.

It is also possible to calculate the effect of wiggler errors on the spatial growth rate in

the high-gain regime.7 Numerical results (for a linear wiggler with B, = 2.4 kG, A,, = 8.0

cm and L = 15 m; and an electron beam with energy 50 MeV, current 1.5 kA and emittance

4.4 mm-mrad) indicate that even for large normalized rms field errors, btr,, = 0.5%, the

mean spatial growth rate is only slightly reduced (by < 4%). This is in agreement with

the discussion presented at the end of Section IV.

12



VI. Beam Steering

One method for reducing the detrimental effects of field errors is through the use

of beam steering" - 0 (external fields are used to steer the electron beam back to axis).

Analytically, this may be modeled by injecting the electron beam with an initial transverse

velocity #_±i such that the centroid displacement is zero at the end of the wiggler 6z(z =

L) = 0. The intial transverse velocity may be specified in terms of the perturbed transverse

velocity in the absence of steering 6 /±IN by the relation

1 L
- - dz'6 N(zF), (31)

where b1±N is given by Eq. (2). In the ID limit, bfl.LN(Z) = ba±(z)/y.

Using the above expression for 3±i, one may calculate the electron motion in the

presence of the field errors including the effects of beam steering. For example, the mean

square transverse orbit deviation in the absence of transverse focusing (ko = 0) is given by

(bf3) , .L, Ez2 L I- 3 + -(
(z)- -- (6fB )z, [z3 (32)

where e = 1 with steering and e = 0 without steering, as derived previously by Kincaid?

Notice that with steering, the rms transverse orbit displacement is maximum at z = L/2

and is equal to 1/4 the value of the rms displacement obtained at the end of the wiggler

in the absence of steering, i.e.,

(bX2(Z = L/2,c = 1))1/2 = (1/4)(6z 2 (z = L,e = 0))1/2. (33)

Similarly, the phase deviation with (e = 1) and without (c = 0) steering in the absence

of transverse focusing (kp = 0) is given by

(6K) = 2 (6 ) + (t) zC2 + 2zL (I 3 + z)] (34)

where it has been assumed ze = zcz = zcy. Both with and without steering, the mean

phase deviation reaches a maximum at z = L. In particular, notice that the effect of

steering is to reduce the mean phase deviation at the wiggler end by a factor of 1/3,

(6~,(z = L,c = 1)) = (1/3)(6 b(z = L,E = 0)). (35)
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It is also possible to calculate the effect of steering on the mean gain, (G). Again,

Eq. (25) applies, where the mean and variance of the quantity A1b, including the effects

of steering are given in Appendix C. Similarly, an expression for the variance of the gain

including steering is given in Appendix D.

The effect of beam steering at the wiggler entrance on the phase deviation b is

illustrated in Fig. 3 for the cases (a) without steering and (b) with steering. Here the solid

curves represent the mean (6ab) and the dashed curves represent one standard deviation

about the mean (6b) ± o, where o, is the variance of the phase deviation. These plots

are for a linearly polarized wiggler with B, , = 5.4 kG, A,, = 2.8 cm, N = 130, 7Y = 350

and 6B.,a = 0.3% in the limit kp = 0 (transverse focusing is neglected). Notice that the

effect of steering at the wiggler entrance reduces (67k) by 1/3 at the end of the wiggler,

as is indicated by Eq. (35). Also, notice that steering has reduced the variance of the

phase deviation by an equally significant amount. For cases in which ko 0 0, it is possible

to show' that steering reduces the mean phase deviation when the length over which the

steering in performed is less than the betatron wavelength, L, < \A. For cases in which

L. > \A,, beam steering may increase the value of (6b).

The effect of beam steering at the wiggler entrance on the FEL gain (in the low-

gain regime) is illustrated in Figs. 4-6. In Fig. 4, the mean gain (G) including the effects

of steering is plotted as a function of the frequency mismatch parameter 1 tN for several

values of normalized rms field error 6bi,, (0.0%, 0.1%,...,0.5%). The parameters in Fig.

4 correspond to a linearly polarized wiggler with B,, = 5.4 kG, \,,, = 2.8 cm, N = 130 and

- = 350 in the limit ko = 0 (transverse focusing is neglected). Figure 4, in comparison to

Fig. 1, clearly indicates that the mean gain is enhanced through the use of steering. For

example, for tbb,,,o = 0.3%, steering increases the peak gain by a factor of approximately

2.5. Figure 5 illustrates this comparison, in which the peak gain (G),G, with and without

the effects of steering, is plotted as a function of normalized rms field error bb,,, for the

above parameters. In Fig. 6, the peak normalized gain (G),f is plotted as a function of

the maximum mean phase deviation, (6 )maz, for the above parameters without steering

in Fig. 6(a) and with steering in Fig. 6(b). The curves in Fig. 6 remain unchanged for

14



various values of 5 b,, and N, hence, the maximum normalized mean gain (G),a is a

function of only/( ), 7 .. To avoid significant reductions in the mean gain, Fig. 6 indicates

that it is necessary to have (6b)l < 27r. Figure 7 shows the peak mean gain (G az,

including the effects of steering, plotted as a function of the normalized rms field error

t5 B,.m,, for the above parameters. Included in Fig. 7 is the variance of the normalized gain,

as obtained from Appendix D, for several values of 6 B.,. As was indicated by the kinetic

simulations for individual wiggler realizations, the variance of the gain tends to be large

and increases with increasing rms field error.
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VII. Error Reduction Techniques

Several methods exist for reducing the detrimental effects of wiggler errors. Above

it was discussed how steering2 - 10 the electron beam at the entrance of the wiggler may

improve FEL performance. This concept may be generalized to the case of multiple beam

steering,3 ' 4 ,'8 ,1 0 1 6 in which the electron beam is steered back to axis in several places along

the length of the wiggler. It may be shown (see, for example, Ref. 8) that in order to

reduce the phase deviation, it is necessary to perform steering over segments of length LS

shorter than a betatron wavelength, Ls < Xp. In addition to beam steering, one may

consider wiggler errors which are correlated! The results discussed above are for wigglers

with random errors which are assumed to be uncorrelated for separation distances greater

than zc !- A\,/2. By considering a wiggler in which the error for a given magnet pole is

correlated to the errors of the surrounding poles, one may construct beneficial correlations

which reduce the detrimental effects of the errors.$

Alternatively, one may reduce the detrimental effects of the errors by considering

an optimal arrangement of the magnet poles. 12 - 5 That is, the magnet poles are to be

arranged in such a way that the detrimental effects of the error of a given pole tend to

cancel those of the surrounding poles. More specifically, the magnet poles are arranged

in such a way as to minimize an appropriate "cost function". For example, one may

choose to arrange the poles such that the magnitude of random walk 16z1 is minimized,

where 6z - f dz' sin k6(z' - z)6B,(z'). (Notice that minimization of If dzbBI does not

correspond to minimization of JIz J.) However, the results discussed above indicate that a

more appropriate cost function for low-gain FELs is the magnitude of the phase deviation

1601[, bO/ f dz'(2P.Lob.L + 6k), as is given by Eq. (8). By minimizing 1601, one reduces

the amount of gain loss. Ideally, one would like to maximize the actual expression for the

gain, Eq. (22), but the functional dependence of the gain on the field errors appears much

too complicated to be of practical usefulness.
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VIII. Conclusions

An electron beam traveling through a magnetic wiggler with finite field errors experi-

ences random v. x 6B_. forces which perturbs the beam motion. This leads to a random

walk of the beam centroid, 6m, as well as a random deviation in the relative phase of

the electrons in the ponderomotive wave, &. In principle, the transverse displacement of

the beam centroid, 8:, may be kept as small as desired through the combined effects of

transverse beam focusing and beam steering. This, however, is not the case for the phase

deviation 6b. Transverse beam focusing is found to be ineffective in reducing the mean

phase deviation ((64b) is independent of k). Beam steering$ may be used to reduce I&I

only when Ls < A0. As an example, for the case ko = 0 and using steering at the wiggler

entrance indicates that the mean phase deviation at the wiggler end is reduced by a factor

of 1/3. The phase deviation leads to a reduction of FEL gain (the low-gain regime is

affected more strongly than the high-gain regime). The normalized mean gain was calcu-

lated and found to be a function of only two parameters, tiN and (b5), z, as indicated

by Eq. (29). To avoid significant loss of gain in the low-gain regime, it is desirable to keep

160 << 27r. In particular, requiring I(b)l << 27r gives, using Eq. (15),

(b )+ 2)/ < a/(7rN), (36)

where a = (1 + a2 )1/2 /a, for a helical wiggler and a = (1 + a2/2)1/ 2 /a,,, for a planar

wiggler. For example, a helical wiggler with N = 100, a. :- 1 and B,,. = =1/2

(6b Y)
1 /2 implies that the normalized rms field error must satisfy bb,,. < 0.3%. Possible

error reduction techniques include multiple beam steering,8'10 correlation of field errors8

and optimal arrangement of magnet poles. 1 - " To reduce the detrimental effects of field

errors on the gain in low-gain FELs, an optimal arrangement of poles corresponds to

minimization of I11, where 6V is given by Eq. (8).
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Appendix A:

Transverse Orbit Deviations

This appendix summarizes the results of Ref. 6 in which the transverse orbit deviations

arising from random wiggler field errors were calculated for (i) helical wigglers, (ii) linear

wigglers with flat pole faces and (iii) linear wigglers with parabolic pole faces.

(i) Helical Wigglers. Consider a helical wiggler (with weak focusing) described by the

normalized vector potential

a. = aw (I + k'y'/2)coskwz + ba 3(z), (Al)
a 1 = aw,(1 + k ,z 2 /2) sin kwz + ba,(z),

where it is assumed k,z 2 << 1 and k y2 << 1. Here, ba. and ba, are related to the field

errors bB, and bB. by

ba.(z) = a,,k,.,1f dz'qB,(z')/B,,
Jo (A2)

ba,(z) = -ak, j dz'bBz(z')/Bw.

The deviations in the transverse electron orbit arising from the errors ba.L are given by

bx(z) = _awkw fZ dz' sin kp (z' z) B(z') (M)

6z(Z) = - k zsnp zl ) B, ' (A3)a,,k fo z) e5B2(z') (A4)

which correspond to the normalized transverse velocity deviations

,1(z) = a dz'cosk (z'- z) 6 S(Z ) (

1= kw dz'cos kp(z' -z) B. ( z ' )  (A6)7 10BW

where k =- akw/v27. Statistically averaging over an ensemble of wigglers gives the

mean square quantities
26z) = a---k 2  bB r 2 z sin 2koz

o B?,2 2ke
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, 2 )(aw k,. 2 /bB 2 z - sin 2kpz (8
(b Ik I(M

(68 =~3) kr B2/ 2 2kO "
a- (ak-' 2  8B2 ): z~ + sin2loz\(M
k-f) B2~ 2k 2kO

(ii) Flat pole faces. Consider a linear wiggler with flat pole faces described by the

normalized vector potential

a = a~, coshkc,,y cos k,.ze3 + 6.a(z)e2 + 6a1 (z)e,. (All)

The z component of the orbit deviation is described by

bz(z)- a= kw j dz'j dz,,bBV(Z) (A12)

,(z) - I d' bB , (A13)
7 0 BW

and the y component of the orbit deviation is described by Eqs. (A4) and (A). Statistically

averaging over an ensemble of wigglers gives the mean square quantities

(6b2) = (_). _ (A14)

( 1.2) = (awkw) 2  b (A15)

where (by ) and (b8,) are given by Eqs. (A8) and (AlO).

(iii) Parabolic Pole Faces. Consider a linear wiggler with parabolic pole faces described

by the normalized vector potential

a. = a cosh(k.z I vi) cosh(ky/ V) cos k.z + ba (z),
(A16)

a. = -a,, sinh(kz/ xV) sinh(kwy/V2V) cos k,,z + ba,(z).

The deviations in the transverse electron orbit are given by Eqs. (A3)-(A6) with ke replaced

by k/pIV. Similarly, the mean square quantities are given by Eqs. (A7)-(A1O) with kp

replaced by ko/%/2.
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Appendix B:

The Rice-Mandel Approximation

Evaluation of the average (6), given by Eq. (23), is dependent upon the statistical

distribution of the phase deviation 60. The expression for 64b consists of terms linear in

the field error 6a_L as well as terms quadratic in the field error. The statistical behavior of

6 depends on whether the linear or quadratic terms dominate in the expression for the

variance a of 64,, where o2 = (6b42) - (6,)2. It is possible to calculate the contribution

of the linear terms to the variance of the phase deviation, 0L, as well as the contribution

of the quadratic terms to the variance, oQ, in the 1D limit with or without the effects of

steering. One finds that the relative magnitude of quadratic terms to the linear terms in

the phase variance is given by

where N = L/A, is the number of wiggler periods, L is the wiggler length, i = z/L and

zc :- X,,/2 was assumed. In the absence of steering, g(i) il, whereas with beam steering

at the wiggler entrance (one steering segment), g(i) is given by

g(i) :4-2(1 + 3i2 ) - 1 [(2 - 8i + 13i 2 ) + 0,2 (-48i 3 + 14i4)]. (B2)

With steering, Eq. (B2) gives g(1/4) =- 0.14, g(1/ 2 ) _ 0.13, g(3/4) = 0.12 and g(1) 2t 0.20.

As an example, consider (6Bf) s- 0.3% and g(i) : 0.1. Require 02/o,2 >> 1 indicates

that N > > 26. Hence, for long wigglers the statistical behavior of b0 is dominated by the

quadratic terms and the linear terms may be neglected in Eq. (8).

If the linear terms are neglected in Eq. (8), then the equation for the phase deviation

reduces to the generic form

= dz'z 2 (ZI), (B3)

where y represents the phase deviation and z represents the random field error. If z is

Gaussian distributed with zero mean, then y will tend to obey a Gamma distribution. The

Rice-Mandel approximation i s assumes that the probability distribution for y, P(y) has

the general form of a Gamma distribution. The parameters occurring in this general i )rm
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are determined by moment matching, i.e., by requiring f dyP(y) = 1, f dyP(y)y = (y)

and f dP(y)y' = -72 + (y)2, where the mean (y) and the variance 0o, are assumed to be

known. One finds

P(Y) ) y' 1 exp (B4)

where s = (y)2/0,2. Knowing the distribution P(y) enables various statistical averages to

be calculated. For example,

(exp(ij)) dP()exp(iy) +/2 exp (s tan (3))

Notice that (y) decreases algebraically as (y)2 increases (assuming a to be roughly con-

stant). The imaginary part of the above expression was used to calculate (C) in Eq.

(25).

As a final note, it should be mentioned that if the linear terms in the expression

for the phase deviation dominate the statistical behavior, then y = f dz'z(z') would be

Gaussian distributed. In particular, (exp(iy)) = exp(i(y) - o"12). Hence, if y is Gaus-

sian distributed, (exp(iy)) decreases exponentially as a' increases. This implies that for

Gaussian distributed phase deviations 6¢, the mean gain (d) would decrease much more

rapidly with increasing (bO)2 than is predicted by the Rice-Mandel approximation, Eq.

(25).
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Appendix C:

Statistical Moments of A6b

Various statistical moments of the function A61 = 6bip(z') - 6,0(z") may be calculated

analytically in the ID limit including the effects of beam steering at wiggler entrance

(one steering segment). In particular, the mean (A8,0) and the square of the variance

2 =l(Ab02)- (Ab) 2 may be calculated using Eqs. (8) and (31). One finds

3 - )Z' (z_ Z- ')
(Cl)

x 1 (z, +z")+ L (z, _ z") + (Z + z"2 + )zzi:)}

2r kw6,a4, (j2 )2Z2 Z _z,,1)
2

X (Z,2) +c 3Z,(z'z" f251 z# z

3 9 (6 )(C2)
_ 2_9(4z' +2z" - L) 1 16z' +  +17z'2z" + 18z"2z)

+ 1 (14 (z'4 +z" 4 ) +19Zz (z' 2 + z2) + 24Z,2Z,)] }
where f = 0 without steering and f = 1 with steering. These expressions may be used to

evaluate the mean gain with steering using Eq. (25), where f = (A6V,) 2 /off&.
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Appendix D:

Gain Variance

It is possible to calculate an approximate expression for the variance of the normalized

gain aG, where

2 ^0 =(G') (G).  (D1)

This expression is given here for completeness. The mean square normalized gain is given

by
(2= I, + 2I + 13 +/14 + Is, (D2)

where

I,= dz dz2  dz j dz 1AzAzZ 2F(zl,z,z 2 ,Z2), (D3)

210 Z 1 1 I 1

12 = dz j dz2 ] dz j Az1Az 2F(zl,z,z 2 ,z'), (D4)
22

I = dzl dz2  dz dz2 -AzlAz 2H(_)(zl,z 1,z 2,z), (D5)

14 dz, dZ2 dz' I z2 AZIAZ2H(_)(i, z1, Z2, Z),1)6

I, = dz f dz2 f dz' dzzAzAz 2 H(+)(zj,zj,z 2,z), (17)

where Az1 = z1 - 4 and Az 2 = z2 - 4. The functions F and H(±) are given by

F =exp -50.1(2) cos [Ak,,(Az 1 - Az 2 ) + (A(-))], (D8)

H(±) = + (A(±))2 
/2

-I((A(-)) ] (D9)

where (= A(±)) 2 /0 2  and

(A(+)) =(A(1,z) -(A(z 2,)), (D10)
f2 2 2

0 'a(k) 0 A(ziz ) + (A(,,))

(0,2 0,2 A (D11)

0-25+ 0 A(z, 2 ) A(z,.)
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with

(.T, y)) 2 ( 2aMI ) (5: (X ± D)
S(D12)

x I (z4 (: + ) ++ 1 (z + 2 + ZY)

6 26

X ( X 2 + 3y 2 + 2 xy ) +e f 2 -52_Y + 2y
3 9 (D13)

-L(4z +2y_-L)_ -1T (16 3 9 y + 17 x y  s y )
9 15L

+4-2 (14 +Y +2x( + y4) + 19Xy (X2 +2y) 2 2y)]

where f 0 without steering and f = 1 with steering. Equation (D13) only holds for

x > y. When z < y, the variables x and y need to be interchanged in Eq. (D13). These

expressions, along with the expression for the mean gain, Eq. (25), may be used to evaluate

the gain variance, aG, with or without the effects of steering. Numerically, this evaluation

is nontrivial.
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Fig. 1. Mean gain ( versus frequency mismatch uN for several values of rrns field error

iBr,i., (0.0%, 0.1%,...,0.5%) for a linearly polarized wiggler with B,, = 5.4 kG, A,,, = 2.8

cm, N = 130 and -t' = 350 in the limit ko = 0.
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Fig. 2. Peak mean gain ((),.2 versus normalized rms field error 6bm, for a linearly

polarized wiggler with B. = 5.4 kG, \,,, = 2.8 cm, N = 130 and -y = 350 in the limit

k, = 0. The solid curve denotes the theoretical result and the x's denote FEL simulations

for individual wilrer realizations.
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Fig. 3. Phase deviation 60' versus number of wiggler periods N (a) without steering and

(b) with steering for a linearly polarized wiggler with B,, = 5.4 kG, A,., = 2.8 cm, -y = 350

and 6b,. = 0.3% in the limit ka = 0. The solid curves represent the mean (6-0) and the

dashed curves represent one standard deviation o, about the mean.
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Fig. 4. Mean gain (C)including the effects of steering versus frequency mismatch j&N for

several values of rim field error 6h (0.0%, 0.1%,...,0.5%) for a linearly polarized wiggler

with B. = 5.4 kG, A. = 2.8 cm, N = 130 arnd -t = 350 in the limit ko~ = 0.
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Fig. 5. Peak gain (C),.: versus normalized rms field error 6B,,. with steering (solid

curve) and without steering (dashed curve) for a linearly polarized wiggler with B", = 5.4

kG, A = 2.8 cm, N = 130 and -y = 350 in the limit ko = 0.
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Fig. 6. Peak gain versus maximum phase deviation (.bmzfor a linearly polarized

wiggler with B., = 5.4 kG, A, = 2.8 cm and -350 in the limit Ic0 = 0 for (a) no steering

and (b) with steering.
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Fig. 7. Peak gain (C),.. versus normalized rms field error 6 B,, with steering for a

linearly polarized wiggler with B. = 5.4 kG, , = 2.8 cm, N = 130 and -y = 350 in the

limit kp = 0. The bars denote one standard deviation as obtained from the gain variance.
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